Generalized Linear

Models Additive

Emily Corcoran & Kathryn Shore

Linear Models

• Gauss 1809

Generalized Linear Models • Nelder & Wedderburn 1972

A generalized linear model is a flexible generalization of ordinary linear regression

- GLMs allow the extension of linear modelling ideas to more response types including count data or binary responses
- Includes linear regression, logistic regression, and Poisson regression
- Normally we assume residuals normally distributed; for GLM's it does not have to be

A generalized linear model is a flexible generalization of ordinary linear regression

- We can use GLM's (instead of LMs or MLR) when…
	- residuals not normally distributed
	- data is heteroscedastic
	- data is non-linear

A generalized linear model is a flexible generalization of ordinary linear regression

- 1. Systematic component (the function that links the predictor to the outcome) $\beta_0 + \beta_1 x$
- 2. Link function (function that "bends the line") $(\beta_0 + \beta_1 x)^2$, $e^{\beta_0 + \beta_1 x}$, $\log(\beta_0 + \beta_1 x)$
- 3. Random component (epsilon does not have to be normally distributed) Normal, Poisson, Gamma, Binomial

An ordinary linear model is a special case of a GLM

- 1. Systematic component (the function that links the function that links the predictor to the predictor to the outcome) σ $\beta_0 + \beta_1 x$
- 2. Link function Identity $(g(y) = y)$

3. Random component Normally distributed

An ordinary linear model is a special case of a GLM

\cdot In R...

- $\text{lm}()$ fits models of the form $Y = X\beta + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$
- $g \text{Im}(t)$ fits models of the form $g(Y) = X\beta + \epsilon$ where $g()$ and the distribution of ϵ need to be specified.
- The default link function for $\text{glm}(\Omega)$ is the identity function and the default error distribution is Normal

With these

defaults, $lm()$ and

 $glm()$ fit the same

Example Scenarios for GLMs

- Predicting # of times people go to therapy (non-negative count data)
- Predicting death from heart disease (binary data)
- Predicting the grade someone will get in a class (ordinal data)

Pros and Cons of GLMS

- The response does not have to be normally distributed
- Able to deal with categorical predictors
- Modelling is interpretable
- Flexibility
- Makes strict assumptions about shape
- Can be prone to overfitting
- Can be sensitive to outliers

CODE DEMO

Generalized Linear

Models Additive

Emily Corcoran & Kathryn Shore

What are Generalized Additive Models?

Linear Models

• Gauss 1809

Generalized Linear Models

• Nelder & Wedderburn 1972

Generalized Additive Models

• Hastie & Tibshirani 1986

What are Generalized Additive Models?

A GAM is a GLM in which the response variable depends linearly on smooth functions of predictor variables

- GLMs are extensions of multiple linear regression: the problem of predicting Y on the basis of several predictors $X_1, X_2, ..., X_p$.
- allow us to extend a linear model to allow non-linear functions while maintaining additivity
- provide a compromise between linear and fully nonparametric models and the contract of the c

What are Generalized Additive Models?

A GAM is a GLM in which the response variable depends linearly on smooth functions of predictor variables

- The main difference is GLMs assume a fixed form of the relationship between the dependent variable and the covariates, but GAMs do not assume a specific form *a priori*
- In GLMs we have a weighted sum of the covariates, in GAMs we have a sum of smooth functions
-

MLR is just a special case of a GAM

Multiple linear regression model:

$$
y_i = \beta_0 + \beta_{1x_{i1}} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i
$$

We can extend this model to allow non-linear relationships by replacing each linear component ($\beta_i x_{ij}$) with a smooth non-linear function $f_i(x_{i})$: $\boldsymbol{\eta}$

$$
y_i = \beta_0 + \sum_{j=1}^P f_j(x_{ij}) + \epsilon_i
$$

= $\beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i$

e.g., $y_i = \beta_0 + \beta_1 \log(x_{i1}) + \beta_2 \sqrt{\log(x_{i2}) + \beta_3 \log(x_{i3}) + \epsilon_i}$

$$
y_i = \beta_0 + \sum_{j=1}^p f_j(x_{ij}) + \epsilon_i
$$

= $\beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i$

This is an additive model because we calculate a separate f_j for each X_i and add together all of their contributions.

- CORIS survey Coronary Risk Factor Study survey
- Generalized Additive Models: Some Applications by Hastie and Tibshirani

- CORIS survey
- Investigating intensity of ischemic heart disease risk factors in rural areas of South Africa
- Risk factors included
	- Systolic blood pressure
	- Cumulative tobacco
	- Cholesterol ratio
	- "Type A" (measure or psychosocial stress on Bortner Scale)
	- Age
	- Total energy
	- Family history (binary)
- Fitted nonparametric logistic regression

Pros and Cons of GAMS

- GAMs allow us to fit a non-linear f_i to each X_i so we can automatically model non-linear relationships that standard linear regression will miss
	- \blacktriangleright We do not need to manually try out many different transformations on each variable individually
- The non-linearity can potentially make more accurate predictions
- Since the model is additive, we can examine the effect of each X_i on Y individually while holding all the other variables fixed
- The smoothness of the function f_i for the variable X_i can be summarized via degrees of freedom

Pros and Cons of GAMs

• The model is restricted to be additive

important interactions can be missed

However…

We can manually add interaction terms

i.e. predictors of the form $X_i\times X_k$ or interaction functions of the form $f_{ik}(X_i, X_k)$

CODE DEMO

