Generalized Linear Additive Models

Emily Corcoran & Kathryn Shore

Linear Models

• Gauss 1809

Generalized Linear Models

Nelder & Wedderburn 1972

A generalized linear model is a flexible generalization of ordinary linear regression

- GLMs allow the extension of linear modelling ideas to more response types including count data or binary responses
- Includes linear regression, logistic regression, and Poisson regression
- Normally we assume residuals normally distributed; for GLM's it does not have to be

A generalized linear model is a flexible generalization of ordinary linear regression

- We can use GLM's (instead of LMs or MLR) when...
 - residuals not normally distributed
 - data is heteroscedastic
 - data is non-linear

A generalized linear model is a flexible generalization of ordinary linear regression

- 1. Systematic component (the function that links the predictor to the outcome) $\beta_0 + \beta_1 x$
- 2. Link function (function that "bends the line") $(\beta_0 + \beta_1 x)^2$, $e^{\beta_0 + \beta_1 x}$, $\log(\beta_0 + \beta_1 x)$
- 3. Random component (epsilon does not have to be normally distributed) Normal, Poisson, Gamma, Binomial

An ordinary linear model is a special case of a GLM

1. Systematic component $\beta_0 + \beta_1 x$

2. Link function Identity (g(y) = y)

3. Random component Normally distributed

An ordinary linear model is a special case of a GLM

• In R...

• 1m() fits models of the form $Y = X\beta + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$

• glm() fits models of the form $g(Y) = X\beta + \epsilon$ where g() and the distribution of ϵ need to be specified.

- The default link function for ${\rm glm}()$ is the identity function and the default error distribution is Normal

With these defaults, 1m() and g1m() fit the same model

Example Scenarios for GLMs

- Predicting # of times people go to therapy (non-negative count data)
- Predicting death from heart disease (binary data)
- Predicting the grade someone will get in a class (ordinal data)

Pros and Cons of GLMS

- The response does not have to be normally distributed
- Able to deal with categorical predictors
- Modelling is interpretable
- Flexibility
- Makes strict assumptions about shape
- Can be prone to overfitting
- Can be sensitive to outliers

CODE DEMO

Generalized Linear Additive Models

Emily Corcoran & Kathryn Shore

What are Generalized Additive Models?

Linear Models

• Gauss 1809

Generalized Linear Models

Nelder & Wedderburn 1972

Generalized Additive Models

• Hastie & Tibshirani 1986

What are Generalized Additive Models?

A GAM is a GLM in which the response variable depends linearly on smooth functions of predictor variables

- GLMs are extensions of multiple linear regression: the problem of predicting Y on the basis of several predictors X_1, X_2, \dots, X_p .
- allow us to extend a linear model to allow non-linear functions while maintaining additivity
- provide a compromise between linear and fully nonparametric models

What are Generalized Additive Models?

A GAM is a GLM in which the response variable depends linearly on smooth functions of predictor variables

- The main difference is GLMs assume a fixed form of the relationship between the dependent variable and the covariates, but GAMs do not assume a specific form *a priori*
- In GLMs we have a weighted sum of the covariates, in GAMs we have a sum of smooth functions
- GAMs more flexible

MLR is just a special case of a GAM

15

Multiple linear regression model:

$$y_i = \beta_0 + \beta_{1x_{i1}} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$

We can extend this model to allow non-linear relationships by replacing each linear component $(\beta_j x_{ij})$ with a smooth non-linear function $f_j(x_{ij})$:

$$y_{i} = \beta_{0} + \sum_{j=1}^{p} f_{j}(x_{ij}) + \epsilon_{i}$$

= $\beta_{0} + f_{1}(x_{i1}) + f_{2}(x_{i2}) + \dots + f_{p}(x_{ip}) + \epsilon_{i}$

e.g., $y_i = \beta_0 + \beta_1 \log(x_{i1}) + \beta_2 \operatorname{sqrt}(x_{i2}) + \beta_3 \log(x_{i3}) + \epsilon_i$

$$y_{i} = \beta_{0} + \sum_{j=1}^{p} f_{j}(x_{ij}) + \epsilon_{i}$$

= $\beta_{0} + f_{1}(x_{i1}) + f_{2}(x_{i2}) + \dots + f_{p}(x_{ip}) + \epsilon_{i}$

This is an additive model because we calculate a separate f_j for each X_j and add together all of their contributions.

- CORIS survey Coronary Risk Factor Study survey
- Generalized Additive Models: Some Applications by Hastie and Tibshirani

- CORIS survey
- Investigating intensity of ischemic heart disease risk factors in rural areas of South Africa
- Risk factors included
 - Systolic blood pressure
 - Cumulative tobacco
 - Cholesterol ratio
 - "Type A" (measure or psychosocial stress on Bortner Scale)
 - Age
 - Total energy
 - Family history (binary)
- Fitted nonparametric logistic regression

Pros and Cons of GAMS

• GAMs allow us to fit a non-linear f_j to each X_j so we can automatically model non-linear relationships that standard linear regression will miss

- The non-linearity can potentially make more accurate predictions
- Since the model is additive, we can examine the effect of each X_j on Y individually while holding all the other variables fixed
- The smoothness of the function f_j for the variable X_j can be summarized via degrees of freedom

Pros and Cons of GAMs

The model is restricted to be additive

important interactions can be missed

However...

We can manually add interaction terms

i.e. predictors of the form $X_j \times X_k$ or interaction functions of the form $f_{jk}(X_j, X_k)$

CODE DEMO

